

BCA Notes

Micro Processor Notes
Contents
1. Internal architecture of 8085 microprocessor

2. 8085 system bus

3. 8085 pin description.

4. 8085 functional description.

5. Programming model of 8085 microprocessor

6. Addressing modes.

7. Instruction set classification.

8. Instruction format.

9. Sample programs.

1. Internal Architecture of 8085 Microprocessor

http://suman-bcanotes.blogspot.com/

Control Unit

Generates signals within mP to carry out the instruction, which has been decoded. In

reality causes certain connections between blocks of the mP to be opened or closed, so

that data goes where it is required, and so that ALU operations occur.

Arithmetic Logic Unit

The ALU performs the actual numerical and logic operation such as ‘add’, ‘subtract’,

‘AND’, ‘OR’, etc. Uses data from memory and from Accumulator to perform

arithmetic. Always stores result of operation in Accumulator.

Registers

The 8085/8080A-programming model includes six registers, one accumulator, and

one flag register, as shown in Figure. In addition, it has two 16-bit registers: the stack

http://3.bp.blogspot.com/-iy0u6DEEUWg/Tc4uNcuWQsI/AAAAAAAAAEU/NhbKimy-zxc/s1600/x.JPG

pointer and the program counter. They are described briefly as follows.

The 8085/8080A has six general-purpose registers to store 8-bit data; these are

identified as B,C,D,E,H, and L as shown in the figure. They can be combined as

register pairs - BC, DE, and HL - to perform some 16-bit operations. The

programmer can use these registers to store or copy data into the registers by using

data copy instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This

register is used to store 8-bit data and to perform arithmetic and logical operations.

The result of an operation is stored in the accumulator. The accumulator is also

identified as register A.

Flags

The ALU includes five flip-flops, which are set or reset after an operation according

to data conditions of the result in the accumulator and other registers. They are called

Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags; they are

listed in the Table and their bit positions in the flag register are shown in the Figure

below. The most commonly used flags are Zero, Carry, and Sign. The microprocessor

uses these flags to test data conditions.

For example, after an addition of two numbers, if the sum in the accumulator id larger

than eight bits, the flip-flop uses to indicate a carry -- called the Carry flag (CY) -- is

set to one. When an arithmetic operation results in zero, the flip-flop called the

Zero(Z) flag is set to one. The first Figure shows an 8-bit register, called the flag

register, adjacent to the accumulator. However, it is not used as a register; five bit

positions out of eight are used to store the outputs of the five flip-flops. The flags are

stored in the 8-bit register so that the programmer can examine these flags (data

conditions) by accessing the register through an instruction.

These flags have critical importance in the decision-making process of the

microprocessor.

The conditions (set or reset) of the flags are tested through the software

instructions. For example, the instruction JC (Jump on Carry) is implemented to

change the sequence of a program when CY flag is set. The thorough understanding

of flag is essential in writing assembly language programs.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register

is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a

16-bit register.

The microprocessor uses this register to sequence the execution of the instructions.

The function of the program counter is to point to the memory address from which the

next byte is to be fetched. When a byte (machine code) is being fetched, the program

counter is incremented by one to point to the next memory location

Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a

memory location in R/W memory, called the stack. The beginning of the stack is

defined by loading 16-bit address in the stack pointer. The stack concept is explained

in the chapter "Stack and Subroutines."

Instruction Register/Decoder

Temporary store for the current instruction of a program. Latest instruction sent here

from memory prior to execution. Decoder then takes instruction and ‘decodes’ or

interprets the instruction. Decoded instruction then passed to next stage.

Memory Address Register

Holds address, received from PC, of next program instruction. Feeds the address bus

with addresses of location of the program under execution.

Control Generator

Generates signals within uP to carry out the instruction which has been decoded. In

reality causes certain connections between blocks of the uP to be opened or closed, so

that data goes where it is required, and so that ALU operations occur.

Register Selector

This block controls the use of the register stack in the example. Just a logic circuit

which switches between different registers in the set will receive instructions from

Control Unit.

General Purpose Registers

mP requires extra registers for versatility. Can be used to store additional data during

a

program. More complex processors may have a variety of differently named registers.

Microprogramming

How does the

binary number? The microprogram in a uP/uC is written by the chip designer and tells

the uP/uC the meaning of each instruction uP/uC can then carry out operation.

--

μP knows what an instruction means, especially when it is only a

2. 8085 System Bus

Typical system uses a number of busses, collection of wires, which transmit

binary

numbers, one bit per wire. A typical microprocessor communicates with memory

and

other devices (input and output) using three busses: Address Bus, Data Bus and

Control Bus.

Address Bus

One wire for each bit, therefore 16 bits = 16 wires. Binary number carried alerts

memory to ‘open’ the designated box. Data (binary) can then be put in or taken

out.The Address Bus consists of 16 wires, therefore 16 bits. Its "width" is 16 bits.

A

16 bit binary number allows 216 different numbers, or 32000 different numbers,

ie

0000000000000000 up to 1111111111111111. Because memory consists of boxes,

each with a unique address, the size of the address bus determines the size of

memory,

which can be used. To communicate with memory the microprocessor sends an

address on the address bus, eg 0000000000000011 (3 in decimal), to the memory.

The

memory the selects box number 3 for reading or writing data. Address bus is

unidirectional, ie numbers only sent from microprocessor to memory, not other

way.

Question?

how many wires does the address bus need, in order to be able to specify an

address in

this memory?

therefore, how many locations must you be able to specify?

: If you have a memory chip of size 256 kilobytes (256 x 1024 x 8 bits),Note: the

memory is organized in groups of 8 bits per location,

Data Bus

Data Bus: carries ‘data’, in binary form, between

memory. Typical size is 8 or 16 bits. Size determined by size of boxes in memory

and

μP and other external units, such as
μ
wires. Therefore, 28 combinations of binary digits. Data bus used to
transmit "data",
ie information, results of arithmetic, etc, between memory and the
microprocessor.
Bus is bi-directional. Size of the data bus determines what arithmetic can
be done. If
only 8 bits wide then largest number is 11111111 (255 in decimal).
Therefore, larger
number have to be broken down into chunks of 255. This slows
microprocessor. Data
Bus also carries instructions from memory to the microprocessor. Size of
the bus
therefore limits the number of possible instructions to 256, each specified
by a

separate number.
P size helps determine performance of μP. The Data Bus typically consists of 8

Control Bus

Control Bus are various lines which have specific functions for coordinating and

controlling uP operations. Eg: Read/NotWrite line, single binary digit. Control

whether memory is being ‘written to’ (data stored in mem) or ‘read from’ (data

taken

out of mem)

timing/synchronising, ‘interrupts’, ‘reset’ etc. Typically

Cannot function correctly without these vital control signals.

The Control Bus carries control signals partly unidirectional, partly bi-

directional.

Control signals are things like "read or write". This tells memory that we are

either

1 = Read, 0 = Write. May also include clock line(s) forμP has 10 control lines.

reading from

specified. Various other signals to control and coordinate the operation of the

system.

Modern day microprocessors, like 80386, 80486 have much larger busses.

Typically

16 or 32 bit busses, which allow larger number of instructions, more memory

location, and faster arithmetic. Microcontrollers organized along same lines,

except:

because microcontrollers have memory etc inside the chip, the busses may all be

internal. In the microprocessor the three busses are external to the chip (except

for the

internal data bus). In case of external busses, the chip connects to the busses via

buffers, which are simply an electronic connection between external bus and the

internal data bus.

a location, specified on the address bus, or writing to a location

3. 8085 Pin description.

Properties

Single + 5V Supply

4 Vectored Interrupts (One is Non Maskable)

Serial In/Serial Out Port

Decimal, Binary, and Double Precision Arithmetic

Direct Addressing Capability to 64K bytes of memory

The Intel 8085A is a new generation, complete 8 bit parallel central processing unit

(CPU). The 8085A uses a multiplexed data bus. The address is split between the 8bit

address bus and the 8bit data bus. Figures are at the end of the document.

Pin Description

The following describes the function of each pin:

A6 - A1s (Output 3 State)

Address Bus; The most significant 8 bits of the memory address or the 8 bits of

the I/0

address,3 stated during Hold and Halt modes.

AD0 - 7 (Input/Output 3state)

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0

address)

appear on the bus during the first clock cycle of a machine state. It then becomes

the

data bus during the second and third clock cycles. 3 stated during Hold and Halt

modes.

ALE (Output)

Address Latch Enable: It occurs during the first clock cycle of a machine state

and

enables the address to get latched into the on chip latch of peripherals. The

falling

edge of ALE is set to guarantee setup and hold times for the address information.

ALE can also be used to strobe the status information. ALE is never 3stated.

SO, S1 (Output)

Data Bus Status. Encoded status of the bus cycle:

S1 S0

O O HALT

0 1 WRITE

1 0 READ

1 1 FETCH

S1 can be used as an advanced R/W status.

RD (Output 3state)

READ; indicates the selected memory or 1/0 device is to be read and that the

Data

Bus is available for the data transfer.

WR (Output 3state)

or 1/0 location. Data is set up at the trailing edge of WR. 3stated during Hold and

Halt

modes.

WRITE; indicates the data on the Data Bus is to be written into the selected

memory

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or

peripheral is ready to send or receive data. If Ready is low, the CPU will wait for

Ready to go high before completing the read or write cycle.

HOLD (Input)

HOLD; indicates that another Master is requesting the use of the Address and

Data

Buses. The CPU, upon receiving the Hold request. will relinquish the use of buses

as

soon as the completion of the current machine cycle. Internal processing can

continue.

The processor can regain the buses only after the Hold is removed. When the

Hold is

acknowledged, the Address, Data, RD, WR, and IO/M lines are 3stated.

HLDA (Output)

HOLD ACKNOWLEDGE; indicates that the CPU has received the Hold request

and

that it will relinquish the buses in the next clock cycle. HLDA goes low after the

Hold

request is removed. The CPU takes the buses one half clock cycle after HLDA

goes

low.

INTR (Input)

INTERRUPT REQUEST; is used as a general purpose interrupt. It is sampled

only

during the next to the last clock cycle of the instruction. If it is active, the

Program

Counter (PC) will be inhibited from incrementing and an INTA will be issued.

During

this cycle a RESTART or CALL instruction can be inserted to jump to the

interrupt

service routine. The INTR is enabled and disabled by software. It is disabled by

Reset

and immediately after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE; is used instead of (and has the same timing as)

RD

during the Instruction cycle after an INTR is accepted. It can be used to activate

the

8259 Interrupt chip or some other interrupt port.

RST 5.5

RST 6.5 - (Inputs)

RST 7.5

RESTART INTERRUPTS; These three inputs have the same timing as I NTR

except

they cause an internal RESTART to be automatically inserted.

RST 7.5 ~~ Highest Priority

RST 6.5

RST 5.5 o Lowest Priority

The priority of these interrupts is ordered as shown above. These interrupts have

a

higher priority than the INTR.

TRAP (Input)

Trap interrupt is a nonmaskable restart interrupt. It is recognized at the same

time as

INTR. It is unaffected by any mask or Interrupt Enable. It has the highest

priority of

any interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and

HLDA

flipflops. None of the other flags or registers (except the instruction register) are

affected The CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output)

Indicates CPlJ is being reset. Can be used as a system RESET. The signal is

synchronized to the processor clock.

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1 can

also be

an external clock input instead of a crystal. The input frequency is divided by 2

to

give the internal operating frequency.

CLK (Output)

Clock Output for use as a system clock when a crystal or R/ C network is used as

an

input to the CPU. The period of CLK is twice the X1, X2 input period.

IO/M (Output)

IO/M indicates whether the Read/Write is to memory or l/O Tristated during

Hold and

Halt modes.

SID (Input)

Serial input data line The data on this line is loaded into accumulator bit 7

whenever a

RIM instruction is executed.

SOD (output)

Serial output data line. The output SOD is set or reset as specified by the SIM

instruction.

Vcc

+5 volt supply.

Vss

Ground Reference.

The 8085A is a complete 8 bit parallel central processor. It requires a single +5

volt

supply. Its basic clock speed is 3 MHz thus improving on the present 8080's

performance with higher system speed. Also it is designed to fit into a minimum

system of three IC's: The CPU, a RAM/ IO, and a ROM or PROM/IO chip.

The 8085A uses a multiplexed Data Bus. The address is split between the higher

8bit

Address Bus and the lower 8bit Address/Data Bus. During the first cycle the

address

is sent out. The lower 8bits are latched into the peripherals by the Address Latch

Enable (ALE). During the rest of the machine cycle the Data Bus is used for

memory

or l/O data.

The 8085A provides RD, WR, and lO/Memory signals for bus control. An

Interrupt

Acknowledge signal (INTA) is also provided. Hold, Ready, and all Interrupts are

synchronized. The 8085A also provides serial input data (SID) and serial output

data

(SOD) lines for simple serial interface.

In addition to these features, the 8085A has three maskable, restart interrupts

and one

non-maskable trap interrupt. The 8085A provides RD, WR and IO/M signals for

Bus

control.

Status Information

Status information is directly available from the 8085A. ALE serves as a status

strobe.

The status is partially encoded, and provides the user with advanced timing of

the

type of bus transfer being done. IO/M cycle status signal is provided directly

also.

Decoded So, S1 Carries the following status information:

HALT, WRITE, READ, FETCH

S1 can be interpreted as R/W in all bus transfers. In the 8085A the 8 LSB of

address

are multiplexed with the data instead of status. The ALE line is used as a strobe

to

enter the lower half of the address into the memory or peripheral address latch.

This

also frees extra pins for expanded interrupt capability.

Interrupt and Serial l/O

The8085A has5 interrupt inputs: INTR, RST5.5, RST6.5, RST 7.5, and TRAP.

INTR

is identical in function to the 8080 INT. Each of the three RESTART inputs, 5.5,

6.5.

7.5, has a programmable mask. TRAP is also a RESTART interrupt except it is

nonmaskable.

The three RESTART interrupts cause the internal execution of RST (saving the

program counter in the stack and branching to the RESTART address) if the

interrupts

are enabled and if the interrupt mask is not set. The non-maskable TRAP causes

the

internal execution of a RST independent of the state of the interrupt enable or

masks.

The interrupts are arranged in a fixed priority that determines which interrupt

is to be

recognized if more than one is pending as follows: TRAP highest priority, RST

7.5,

RST 6.5, RST 5.5, INTR lowest priority This priority scheme does not take into

account the priority of a routine that was started by a higher priority interrupt.

RST

5.5 can interrupt a RST 7.5 routine if the interrupts were re-enabled before the

end of

the RST 7.5 routine. The TRAP interrupt is useful for catastrophic errors such

as

power failure or bus error. The TRAP input is recognized just as any other

interrupt

but has the highest priority. It is not affected by any flag or mask. The TRAP

input is

both edge and level sensitive.

Basic System Timing

The 8085A has a multiplexed Data Bus. ALE is used as a strobe to sample the

lower

8bits of address on the Data Bus. Figure 2 shows an instruction fetch, memory

read

and l/ O write cycle (OUT). Note that during the l/O write and read cycle that the

l/O

port address is copied on both the upper and lower half of the address. As in the

8080,

the READY line is used to extend the read and write pulse lengths so that the

8085A

can be used with slow memory. Hold causes the CPU to relingkuish the bus when

it is

through with it by floating the Address and Data Buses.

System Interface

8085A family includes memory components, which are directly compatible to the

8085A CPU. For example, a system consisting of the three chips, 8085A, 8156,

and

8355 will have the following features:

· 2K Bytes ROM

· 256 Bytes RAM

· 1 Timer/Counter

· 4 8bit l/O Ports

· 1 6bit l/O Port

· 4 Interrupt Levels

· Serial In/Serial Out Ports

In addition to standard l/O, the memory mapped I/O offers an efficient l/O

addressing

technique. With this technique, an area of memory address space is assigned for

l/O

address, thereby, using the memory address for I/O manipulation. The 8085A

CPU

can also interface with the standard memory that does not have the multiplexed

address/data bus.

5. The 8085 Programming Model

In the previous tutorial we described the 8085 microprocessor registers in

reference to

the internal data operations. The same information is repeated here briefly to

provide

the continuity and the context to the instruction set and to enable the readers

who

prefer to focus initially on the programming aspect of the microprocessor.

http://1.bp.blogspot.com/-HggUmqY5178/Tc40uMExmcI/AAAAAAAAAEc/htd-3r_-QLU/s1600/x.JPG

The 8085 programming model includes six registers, one accumulator, and one

flag

register, as shown in Figure. In addition, it has two 16-bit registers: the stack

pointer

and the program counter. They are described briefly as follows.

Registers

The 8085 has six general-purpose registers to store 8-bit data; these are identified

as

B,C,D,E,H, and L as shown in the figure. They can be combined as register pairs

-

BC, DE, and HL - to perform some 16-bit operations. The programmer can use

these

registers to store or copy data into the registers by using data copy instructions.

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU).

This

register is used to store 8-bit data and to perform arithmetic and logical

operations.

The result of an operation is stored in the accumulator. The accumulator is also

identified as register A.

Flags
The ALU includes five flip-flops, which are set or reset after an operation according

to data conditions of the result in the accumulator and other registers. They are called

Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags; their bit

positions in the flag register are shown in the Figure below. The most commonly used

http://3.bp.blogspot.com/-S-qN1fhYgIs/Tc42oDdO2oI/AAAAAAAAAEk/QEYLUIe-N18/s1600/x.JPG

flags are Zero, Carry, and Sign. The microprocessor uses these flags to test data

conditions.

For example, after an addition of two numbers, if the sum in the accumulator id larger

than eight bits, the flip-flop uses to indicate a carry -- called the Carry flag (CY) -- is

set to one. When an arithmetic operation results in zero, the flip-flop called the

Zero(Z) flag is set to one. The first Figure shows an 8-bit register, called the flag

register, adjacent to the accumulator. However, it is not used as a register; five bit

positions out of eight are used to store the outputs of the five flip-flops. The flags are

stored in the 8-bit register so that the programmer can examine these flags (data

conditions) by accessing the register through an instruction.

These flags have critical importance in the decision-making process of the microprocessor.

The conditions (set or reset) of the flags are tested through the software

instructions. For example, the instruction JC (Jump on Carry) is implemented to

change the sequence of a program when CY flag is set. The thorough understanding

of flag is essential in writing assembly language programs.

Program Counter (PC)
This 16-bit register deals with sequencing the execution of instructions. This register

is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a

16-bit register.

The microprocessor uses this register to sequence the execution of the instructions.

The function of the program counter is to point to the memory address from which the

next byte is to be fetched. When a byte (machine code) is being fetched, the program

counter is incremented by one to point to the next memory location

Stack Pointer (SP)
The stack pointer is also a 16-bit register used as a memory pointer. It points to a

memory location in R/W memory, called the stack. The beginning of the stack is

defined by loading 16-bit address in the stack pointer.

This programming model will be used in subsequent tutorials to examine how these

registers are affected after the execution of an instruction.
6. The 8085 Addressing Modes

The instructions MOV B, A or MVI A, 82H are to copy data from a source into a

destination. In these instructions the source can be a register, an input port, or an 8-bit

number (00H to FFH). Similarly, a destination can be a register or an output port. The

sources and destination are operands. The various formats for specifying operands are

called the ADDRESSING MODES. For 8085, they are:

1. Immediate addressing.

2. Register addressing.

3. Direct addressing.

4. Indirect addressing.

http://1.bp.blogspot.com/-QG4f-9tyUIM/Tc46Qe_ZHkI/AAAAAAAAAEo/MQcBV7KIIz8/s1600/x.JPG

Immediate addressing
Data is present in the instruction. Load the immediate data to the destination provided.

Example: MVI R,data

Register addressing
Data is provided through the registers.

Example: MOV Rd, Rs

Direct addressing
Used to accept data from outside devices to store in the accumulator or send the data

stored in the accumulator to the outside device. Accept the data from the port 00H and

store them into the accumulator or Send the data from the accumulator to the port

01H.

Example: IN 00H or OUT 01H

Indirect Addressing
This means that the Effective Address is calculated by the processor. And the

contents of the address (and the one following) is used to form a second address. The

second address is where the data is stored. Note that this requires several memory

accesses; two accesses to retrieve the 16-bit address and a further access (or accesses)

to retrieve the data which is to be loaded into the register.

7. Instruction Set Classification
An

specific function. The entire group of instructions, called the

determines what functions the microprocessor can perform. These instructions can be

classified into the following five functional categories: data transfer (copy)

operations, arithmetic operations, logical operations, branching operations, and

machine-control operations.

instruction is a binary pattern designed inside a microprocessor to perform ainstruction

set,

Data Transfer (Copy) Operations
This group of instructions copy data from a location called a source to another

location called a destination, without modifying the contents of the source. In

technical manuals, the term

the term

source are destroyed when, in fact, the contents are retained without any modification.

The various types of data transfer (copy) are listed below together with examples of

each type:

http://4.bp.blogspot.com/-2lsEmpf3SCs/Tc48Ej79wmI/AAAAAAAAAEs/Iab_7UT0Klg/s1600/x.JPG

data transfer is used for this copying function. However,transfer is misleading; it creates the

impression that the contents of the

Arithmetic Operations

These instructions perform arithmetic operations such as addition, subtraction,

increment, and decrement.

Addition -

memory location can be added to the contents of the accumulator and the sum is

stored in the accumulator. No two other 8-bit registers can be added directly

(e.g., the

contents of register B cannot be added directly to the contents of the register C).

The

instruction DAD is an exception; it adds 16-bit data directly in register pairs.

Any 8-bit number, or the contents of a register or the contents of a

Subtraction -

memory location can be subtracted from the contents of the accumulator and the

results stored in the accumulator. The subtraction is performed in 2's

compliment, and

the results if negative, are expressed in 2's complement. No two other registers

can be

subtracted directly.

Any 8-bit number, or the contents of a register, or the contents of a

Increment/Decrement -

incremented or decrement by 1. Similarly, the 16-bit contents of a register pair

(such

as BC) can be incremented or decrement by 1. These increment and decrement

operations differ from addition and subtraction in an important way; i.e., they

can be

performed in any one of the registers or in a memory location.

The 8-bit contents of a register or a memory location can be

Logical Operations

These instructions perform various logical operations with the contents of the

accumulator.

AND, OR Exclusive-OR

a memory location can be logically ANDed, Ored, or Exclusive-ORed with the

contents of the accumulator. The results are stored in the accumulator.

- Any 8-bit number, or the contents of a register, or of

Rotate

position.

- Each bit in the accumulator can be shifted either left or right to the next

Compare

be compared for equality, greater than, or less than, with the contents of the

accumulator.

- Any 8-bit number, or the contents of a register, or a memory location can

Complement -

replaced by 1s and all 1s are replaced by 0s.

The contents of the accumulator can be complemented. All 0s are

Branching Operations

This group of instructions alters the sequence of program execution either

conditionally or unconditionally.

Jump -

the programming. These instructions test for a certain conditions (e.g., Zero or

Carry

flag) and alter the program sequence when the condition is met. In addition, the

instruction set includes an instruction called

Conditional jumps are an important aspect of the decision-making process

inunconditional jump.

Call, Return, and Restart -

either by calling a subroutine or returning from a subroutine. The conditional Call

and

Return instructions also can test condition flags.

These instructions change the sequence of a program

Machine Control Operations

These instructions control machine functions such as Halt, Interrupt, or do

nothing.

The microprocessor operations related to data manipulation can be summarized in

four functions:

1.

copying data

2.

performing arithmetic operations

3.

performing logical operations

4.

Some important aspects of the instruction set are noted below:

testing for a given condition and alerting the program sequence

1.

the destination are changed. The data copy instructions do not affect the flags.

In data transfer, the contents of the source are not destroyed; only the contents of

2.

accumulator, and the results are stored in the accumulator (with some

expectations). The flags are affected according to the results.

Arithmetic and Logical operations are performed with the contents of the

3.

Any register including the memory can be used for increment and decrement.

4.

data condition.

A program sequence can be changed either conditionally or by testing for a given

8. Instruction Format

An

specified data. Each instruction has two parts: one is task to be performed, called

the

instruction is a command to the microprocessor to perform a given task on a

operation code

(opcode), and the second is the data to be operated on, called the

operand.

(or 16-bit) data, an internal register, a memory location, or 8-bit (or 16-bit) address.

In some instructions, the operand is implicit.

The operand (or data) can be specified in various ways. It may include 8-bit

Instruction word size

The 8085 instruction set is classified into the following three groups according to

word size:

1.

One-word or 1-byte instructions

2.

Two-word or 2-byte instructions

3.

In the 8085, "byte" and "word" are synonymous because it is an 8-bit

microprocessor.

However, instructions are commonly referred to in terms of bytes rather than

words.

Three-word or 3-byte instructions

One-Byte Instructions

A 1-byte instruction includes the opcode and operand in the same byte. Operand(s)

are internal register and are coded into the instruction.

For example:

http://3.bp.blogspot.com/-az9Mh6zpzn4/Tc48_Y9ybNI/AAAAAAAAAEw/XR-xZ8gchyo/s1600/x.JPG

These instructions are 1-byte instructions performing three different tasks. In the

first

instruction, both operand registers are specified. In the second instruction, the

operand

B is specified and the accumulator is assumed. Similarly, in the third instruction,

the

accumulator is assumed to be the implicit operand. These instructions are stored in

8-

bit binary format in memory; each requires one memory location.

MOV rd, rs

rd <-- rs copies contents of rs into rd.

Coded as 01 ddd sss where ddd is a code for one of the 7 general registers which is

the destination of the data, sss is the code of the source register.

Example: MOV A,B

Coded as 01111000 = 78H = 170 octal (octal was used extensively in instruction

design of such processors).

ADD r

A <-- A + r

Two-Byte Instructions
In a two-byte instruction, the first byte specifies the operation code and the second

byte specifies the operand. Source operand is a data byte immediately following the

opcode. For example:

Assume that the data byte is 32H. The assembly language instruction is written as

The instruction would require two memory locations to store in memory.

MVI r,data

http://1.bp.blogspot.com/-qi7k-WbwNEE/Tc49o3wvoRI/AAAAAAAAAE0/ciEZPhRxs24/s1600/x.JPG
http://2.bp.blogspot.com/-AcukXQVl3PY/Tc4-DjLGMhI/AAAAAAAAAE4/xb-QWfVOq3s/s1600/x.JPG

r <-- data

Example: MVI A,30H coded as 3EH 30H as two contiguous bytes. This is an

example of immediate addressing.

ADI data

A <-- A + data

OUT port
0011 1110

DATA

where port is an 8-bit device address. (Port) <-- A. Since the byte is not the data but

points directly to where it is located this is called direct addressing.

Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two

bytes specify the 16-bit address. Note that the second byte is the low-order address

and the third byte is the high-order address.

opcode + data byte + data byte

For example:

This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte

LXI rp, data16

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The two data

bytes are 16-bit data in L H order of significance.

rp <-- data16

Example:

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate

addressing.

LDA addr

A <-- (addr) Addr is a 16-bit address in L H order. Example: LDA 2134H coded as

3AH 34H 21H. This is also an example of direct addressing.

9. Sample Programs

Write an assembly program to add two numbers

Program

MVI D, 8BH

MVI C, 6FH

MOV A, C
1100 0011

1000 0101

http://3.bp.blogspot.com/-nzTxbq8M1TU/Tc4-u9syu9I/AAAAAAAAAE8/7hGhQfYTMi4/s1600/x.JPG

0010 0000

ADD D

OUT PORT1

HLT

Write an assembly program to multiply a number by 8

Program

MVI A, 30H

RRC

RRC

RRC

OUT PORT1

HLT

Write an assembly program to find greatest between two numbers

Program

MVI B, 30H

MVI C, 40H

MOV A, B

CMP C

JZ EQU

JC GRT

OUT PORT1

HLT

EQU: MVI A, 01H

OUT PORT1

HLT

GRT: MOV A, C

OUT PORT1

HLT

4. 8085 Functional Description

Awesome Inc. theme. Powered

